关键词: Alveolar cleft bone graft Equivalent strain Equivalent stress Maxillofacial bone Maxillofacial bone suture Unilateral complete cleft lip and palate

Mesh : Cleft Lip / diagnostic imaging surgery Cleft Palate / diagnostic imaging surgery Finite Element Analysis Humans Maxilla / diagnostic imaging surgery

来  源:   DOI:10.1186/s12938-022-01000-y

Abstract:
BACKGROUND: The objective is to clarify the effect of alveolar cleft bone graft on maxillofacial biomechanical stabilities, the key areas when bone grafting and in which should be supplemented with bone graft once bone resorption occurred in UCCLP (unilateral complete cleft lip and palate).
METHODS: Maxillofacial CAD (computer aided design) models of non-bone graft and full maxilla cleft, full alveolar cleft bone graft, bone graft in other sites of the alveolar cleft were acquired by processing the UCCLP maxillofacial CT data in three-dimensional modeling software. The maxillofacial bone EQV (equivalent) stresses and bone suture EQV strains under occlusal states were obtained in the finite element analysis software.
RESULTS: Under corresponding occlusal states, the EQV stresses of maxilla, pterygoid process of sphenoid bone on the corresponding side and anterior alveolar arch on the non-cleft side were higher than other maxillofacial bones, the EQV strains of nasomaxillary, zygomaticomaxillary and pterygomaxillary suture on the corresponding side were higher than other maxillofacial bone sutures. The mean EQV strains of nasal raphe, the maximum EQV stresses of posterior alveolar arch on the non-cleft side, the mean and maximum EQV strains of nasomaxillary suture on the non-cleft side in full alveolar cleft bone graft model were all significantly lower than those in non-bone graft model. The mean EQV stresses of bilateral anterior alveolar arches, the maximum EQV stresses of maxilla and its alveolar arch on the cleft side in the model with bone graft in lower 1/3 of the alveolar cleft were significantly higher than those in full alveolar cleft bone graft model.
CONCLUSIONS: For UCCLP, bilateral maxillae, pterygoid processes of sphenoid bones and bilateral nasomaxillary, zygomaticomaxillary, pterygomaxillary sutures, anterior alveolar arch on the non-cleft side are the main occlusal load-bearing structures before and after alveolar cleft bone graft. Alveolar cleft bone graft mainly affects biomechanical stabilities of nasal raphe and posterior alveolar arch, nasomaxillary suture on the non-cleft side. The areas near nasal floor and in the middle of the alveolar cleft are the key sites when bone grafting, and should be supplemented with bone graft when the bone resorbed in these areas.
摘要:
背景:目的是阐明牙槽突裂植骨对颌面部生物力学稳定性的影响,UCCLP(单侧完全性唇腭裂)发生骨吸收后,植骨时应补充植骨的关键区域。
方法:非骨移植和上颌骨全裂的颌面CAD(计算机辅助设计)模型,全牙槽突裂植骨,通过在三维建模软件中处理UCCLP颌面部CT数据,获得牙槽突裂其他部位的植骨.在有限元分析软件中获得了咬合状态下的颌面部骨EQV(等效)应力和骨缝线EQV应变。
结果:在相应的咬合状态下,上颌骨的EQV应力,相应侧蝶骨翼状突和非裂隙侧的前牙槽弓高于其他颌面骨,鼻腋窝的EQV菌株,相应侧的接骨腋窝和翼状腋窝缝线高于其他颌面骨缝线。鼻中缝的平均EQV菌株,非裂隙侧后牙槽弓的最大EQV应力,全牙槽突裂植骨模型非裂侧鼻颌缝平均和最大EQV应变均显著低于非植骨模型。双侧前牙槽弓的平均EQV应力,在牙槽裂下部1/3植骨的模型中,上颌骨及其牙槽弓在裂侧的最大EQV应力明显高于完全牙槽裂植骨模型。
结论:对于UCCLP,双侧上颌骨,蝶骨翼状突和双侧鼻腋窝,合子,翼状腋窝缝合,非裂侧牙槽前弓是牙槽裂植骨前后的主要咬合承重结构。牙槽沟裂植骨主要影响鼻道和后牙槽弓的生物力学稳定性,无裂侧的鼻腋窝缝合。鼻底附近和牙槽突裂中部是植骨时的关键部位,当骨在这些区域吸收时,应补充骨移植。
公众号