关键词: dynamic shelf-life food waste prevention meat quality meat spoilage predictive microbiology sensory modeling

来  源:   DOI:10.3390/foods10112740   PDF(Pubmed)

Abstract:
The high perishability of fresh meat results in short sales and consumption periods, which can lead to high amounts of food waste, especially when a fixed best-before date is stated. Thus, the aim of this study was the development of a real-time dynamic shelf-life criterion (DSLC) for fresh pork filets based on a multi-model approach combining predictive microbiology and sensory modeling. Therefore, 647 samples of ma-packed pork loin were investigated in isothermal and non-isothermal storage trials. For the identification of the most suitable spoilage predictors, typical meat quality parameters (pH-value, color, texture, and sensory characteristics) as well as microbial contamination (total viable count, Pseudomonas spp., lactic acid bacteria, Brochothrix thermosphacta, Enterobacteriaceae) were analyzed at specific investigation points. Dynamic modeling was conducted using a combination of the modified Gompertz model (microbial data) or a linear approach (sensory data) and the Arrhenius model. Based on these models, a four-point scale grading system for the DSLC was developed to predict the product status and shelf-life as a function of temperature data in the supply chain. The applicability of the DSLC was validated in a pilot study under real chain conditions and showed an accurate real-time prediction of the product status.
摘要:
暂无翻译
公众号