关键词: Benign periablational enhancement Liver cancers Magnetic resonance imaging Positron emission tomography Radiofrequency ablation

来  源:   DOI:10.1016/j.jvir.2021.09.016

Abstract:
OBJECTIVE: To test the hypothesis that 18F-fluorodeoxyglucose positron emission tomography and MRI (18F-FDG PET/MRI) can detect early residual tumor following radiofrequency ablation (RFA) of liver cancer using a VX2 tumor model.
METHODS: Twenty-four rabbits with VX2 liver tumors were randomly divided into three groups (n = 8/group): group 1 without RFA treatment, group 2 with complete ablation, and group 3 with partial ablation. 18F-FDG PET/MRI scan was obtained in three animal groups within 2 hours post-RFA. The maximum standardized uptake value (SUVmax) of non-treated liver tumor, benign peri-ablational enhancement (BPE), residual tumor, ablated tumor, adjacent liver parenchyma, and mean SUV of normal liver were measured, respectively. The ratios of SUVmax for these targets to mean SUV of normal liver (TNR) were calculated and statistically compared.
RESULTS: The mean TNR of non-treated liver tumors in group 1 was significantly greater than that of adjacent liver parenchyma (8.68 ± 0.71 vs 1.89 ± 0.26, p < 0.001). In group 2, the mean TNR of BPE was significantly greater than that of adjacent liver parenchyma (2.85 ± 0.20 vs 1.86 ± 0.25, p < 0.001). In group 3, the mean TNR of residual tumor was significantly greater than that of BPE (8.64 ± 0.59 vs 2.78 ± 0.23, p < 0.001), which was significantly greater than that of completely ablated tumor (2.78 ± 0.23 vs 0.50 ± 0.06, p < 0.001).
CONCLUSIONS: 18F-FDG PET/MRI may serve as a promising imaging tool for early detection of viable residual tumors due to incomplete tumor ablation.
摘要:
暂无翻译
公众号