关键词: 2,4,6-trihydroxybenzophenone Escherichia coli benzoate-CoA ligase benzophenone synthase biotransformation sodium benzoate structural annotation

Mesh : Benzoates / metabolism Benzophenones / metabolism Biotransformation Carbon-Carbon Ligases / metabolism Chromatography, Liquid Coenzyme A Ligases / metabolism Computer Simulation Culture Media Escherichia coli / genetics metabolism Garcinia mangostana / enzymology genetics Malonyl Coenzyme A / metabolism Metabolic Engineering / methods Plasmids / genetics Rhodopseudomonas / enzymology genetics Tandem Mass Spectrometry Xanthones / metabolism

来  源:   DOI:10.3390/molecules26092779   PDF(Sci-hub)   PDF(Pubmed)

Abstract:
The synthesis of natural products by E. coli is a challenging alternative method of environmentally friendly minimization of hazardous waste. Here, we establish a recombinant E. coli capable of transforming sodium benzoate into 2,4,6-trihydroxybenzophenone (2,4,6-TriHB), the intermediate of benzophenones and xanthones derivatives, based on the coexpression of benzoate-CoA ligase from Rhodopseudomonas palustris (BadA) and benzophenone synthase from Garcinia mangostana (GmBPS). It was found that the engineered E. coli accepted benzoate as the leading substrate for the formation of benzoyl CoA by the function of BadA and subsequently condensed, with the endogenous malonyl CoA by the catalytic function of BPS, into 2,4,6-TriHB. This metabolite was excreted into the culture medium and was detected by the high-resolution LC-ESI-QTOF-MS/MS. The structure was elucidated by in silico tools: Sirius 4.5 combined with CSI FingerID web service. The results suggested the potential of the new artificial pathway in E. coli to successfully catalyze the transformation of sodium benzoate into 2,4,6-TriHB. This system will lead to further syntheses of other benzophenone derivatives via the addition of various genes to catalyze for functional groups.
摘要:
通过大肠杆菌合成天然产物是环境友好地最小化有害废物的具有挑战性的替代方法。这里,我们建立了能够将苯甲酸钠转化为2,4,6-三羟基二苯甲酮(2,4,6-TriHB)的重组大肠杆菌,二苯甲酮和黄吨酮衍生物的中间体,基于来自沼泽红假单胞菌(BadA)的苯甲酸盐-CoA连接酶和来自藤黄藤黄(GmBPS)的二苯甲酮合酶的共表达。发现工程大肠杆菌接受苯甲酸酯作为通过BadA的功能形成苯甲酰基CoA的主要底物,随后浓缩,通过BPS的催化功能与内源性丙二酰辅酶A,到2,4,6-TriHB。该代谢物被排泄到培养基中,并通过高分辨率LC-ESI-QTOF-MS/MS进行检测。该结构由silico工具阐明:Sirius4.5与CSIFingerIDWeb服务相结合。结果表明,新的人工途径在大肠杆菌中成功催化苯甲酸钠转化为2,4,6-TriHB的潜力。该系统将通过添加各种基因以催化官能团而导致其他二苯甲酮衍生物的进一步合成。
公众号