关键词: Aquifex aeolicus DMSO reductase family of molybdenum enzymes Phylogeny Quinone Sulfite dehydrogenase Sulfite oxidation

Mesh : Aquifex / enzymology genetics growth & development Bacterial Proteins / genetics metabolism Electron Transport Molybdenum / chemistry Oxygen Consumption Phylogeny Quinones / chemistry Sulfite Dehydrogenase / genetics metabolism Sulfites / chemistry

来  源:   DOI:10.1016/j.bbabio.2020.148279   PDF(Sci-hub)

Abstract:
The microaerophilic bacterium Aquifex aeolicus is a chemolitoautotroph that uses sulfur compounds as electron sources. The model of oxidation of the energetic sulfur compounds in this bacterium predicts that sulfite would probably be a metabolic intermediate released in the cytoplasm. In this work, we purified and characterized a membrane-bound sulfite dehydrogenase, identified as an SoeABC enzyme, that was previously described as a sulfur reductase. It is a member of the DMSO-reductase family of molybdenum enzymes. This type of enzyme was identified a few years ago but never purified, and biochemical data and kinetic properties were completely lacking. An enzyme catalyzing sulfite oxidation using Nitro-blue tetrazolium as artificial electron acceptor was extracted from the membrane fraction of Aquifex aeolicus. The purified enzyme is a dimer of trimer (αβγ)2 of about 390 kDa. The KM for sulfite and kcat values were 34 μM and 567 s-1 respectively, at pH 8.3 and 55 °C. We furthermore showed that SoeABC reduces a UQ10 analogue, the decyl-ubiquinone, as well, with a KM of 2.6 μM and a kcat of 52.9 s-1. It seems to specifically oxidize sulfite but can work in the reverse direction, reduction of sulfur or tetrathionate, using reduced methyl viologen as electron donor. The close phylogenetic relationship of Soe with sulfur and tetrathionate reductases that we established, perfectly explains this enzymatic ability, although its bidirectionality in vivo still needs to be clarified. Oxygen-consumption measurements confirmed that electrons generated by sulfite oxidation in the cytoplasm enter the respiratory chain at the level of quinones.
摘要:
暂无翻译
公众号