关键词: Finite element simulation Physical bactericidal activity Recyclable bactericidal performance Ultrafast bactericidal speed ZnO nanoarray

Mesh : Anti-Bacterial Agents Bacteria Catalysis Escherichia coli Staphylococcus aureus Zinc Oxide

来  源:   DOI:10.1016/j.scitotenv.2020.139714   PDF(Sci-hub)   PDF(Pubmed)

Abstract:
Various nanostructured surfaces have been developed recently to physically inactivate bacteria, for reducing the rapidly spreading threat of pathogenic bacteria. However, it generally takes several hours for these surfaces to inactivate most of the bacteria, which greatly limits their application in the fields favoring rapid bactericidal performance. Besides, the accumulated bacteria debris left on these surfaces is rarely discussed in the previous reports. Herein we report the nanotip-engineered ZnO nanoarrays (NAs) with ultrafast physical bactericidal rate and the ability to photocatalytically remove the bacteria debris. Neither chemical (Zn2+ or reactive oxygen species) nor photocatalytic effect leads to the ultrafast bactericidal rate, where 97.5% of E. coli and 94.9% of S. aureus are inactivated within only 1 min. The simulation analysis further supported our proposed mechanism attributing the ultrafast bactericidal activity to the great stress enabled by the uneven topography. Moreover, the re-exposure of the ZnO NAs nanotips can be achieved in only 10 min under a mild UV light source. This study not only presents an ultrafast physical bactericidal activity, but also demonstrates the potential of the recyclable and photocatalytic self-cleaning functions of theses surfaces for applications that desire rapid and sustainable bactericidal performance.
摘要:
最近已经开发了各种纳米结构表面来物理灭活细菌,减少致病菌快速传播的威胁。然而,这些表面通常需要几个小时才能使大多数细菌失活,这极大地限制了它们在有利于快速杀菌性能的领域中的应用。此外,在以前的报告中很少讨论这些表面上积累的细菌碎片。在这里,我们报告了纳米尖端工程的ZnO纳米阵列(NAs)具有超快的物理杀菌率和光催化去除细菌碎片的能力。化学(Zn2+或活性氧)和光催化作用都不会导致超快杀菌率,其中97.5%的大肠杆菌和94.9%的金黄色葡萄球菌在仅1分钟内失活。模拟分析进一步支持了我们提出的机制,该机制将超快杀菌活性归因于不均匀的地形所带来的巨大压力。此外,ZnONAs纳米尖端的再暴露可以在温和的紫外光源下仅10分钟内实现。这项研究不仅提出了一种超快的物理杀菌活性,但也证明了这些表面的可回收和光催化自清洁功能的潜力,用于需要快速和可持续杀菌性能的应用。
公众号