关键词: SERS sensing ZnO nanoarray acoustics acoustofluidics microfluidics

Mesh : Escherichia coli Nanostructures Silver Spectrum Analysis, Raman Zinc Oxide

来  源:   DOI:10.1021/acsnano.0c02145   PDF(Sci-hub)   PDF(Pubmed)

Abstract:
The integration of acoustics and microfluidics (termed acoustofluidics) presents a frontier in the engineering of functional micro-/nanomaterials. Acoustofluidic techniques enable active and precise spatiotemporal control of matter, providing great potential for the design of advanced nanosystems with tunable material properties. In this work, we introduce an acoustofluidic approach for engineering multifunctional three-dimensional nanostructure arrays and demonstrate their potential in enrichment and biosensing applications. In particular, our acoustofluidic device integrates an acoustic transducer with a sharp-edge-based acoustofluidic reactor that enables uniform patterning of zinc oxide (ZnO) nanoarrays with customizable lengths, densities, diameters, and other properties. The resulting ZnO nanoarray-coated glass capillaries can rapidly and efficiently capture and enrich biomolecules with sizes ranging from a few nanometers to several hundred nanometers. In order to enable the detection of these biomolecules, silver (Ag) nanoparticles are deposited onto the ZnO nanoarrays, and the integrated ZnO-Ag capillary device functions as a label-free plasmonic biosensing system for surface-enhanced Raman spectroscopy (SERS) based detection of exosomes, DNA oligonucleotides, and E. coli bacteria. The optical sensing enhancement of ZnO-Ag capillary is further validated through finite-difference time-domain (FDTD) simulations. These findings not only provide insights into the engineering of functional micro/nanomaterials using acoustofluidics but also shed light onto the development of portable microanalytical devices for point-of-care applications.
摘要:
声学和微流体的集成(称为声流体)是功能微/纳米材料工程中的前沿。声流体技术能够对物质进行主动和精确的时空控制,为具有可调材料特性的先进纳米系统的设计提供了巨大的潜力。在这项工作中,我们介绍了一种用于工程多功能三维纳米结构阵列的声流体方法,并展示了它们在富集和生物传感应用中的潜力。特别是,我们的声流体装置集成了一个声换能器与一个锋利的边缘为基础的声流体反应器,使氧化锌(ZnO)纳米阵列的均匀图案化与可定制的长度,密度,直径,和其他属性。所得的ZnO纳米阵列涂覆的玻璃毛细管可以快速有效地捕获和富集尺寸范围从几纳米到几百纳米的生物分子。为了能够检测这些生物分子,银(Ag)纳米粒子沉积在ZnO纳米阵列上,和集成的ZnO-Ag毛细管装置作为一个无标记的等离子体生物传感系统,用于基于表面增强拉曼光谱(SERS)的外泌体检测,DNA寡核苷酸,和大肠杆菌。通过时域有限差分(FDTD)仿真进一步验证了ZnO-Ag毛细管的光学传感增强。这些发现不仅为使用声流体技术的功能微/纳米材料的工程提供了见解,而且还为用于护理点应用的便携式微分析设备的开发提供了启示。
公众号