关键词: T-cell receptor antigen domain movements major histocompatibility complex molecular dynamics simulation

Mesh : Binding Sites Humans Major Histocompatibility Complex Molecular Dynamics Simulation Peptides / chemistry Protein Binding Protein Conformation Receptors, Antigen, T-Cell, alpha-beta / chemistry

来  源:   DOI:10.3390/cells8070720   PDF(Sci-hub)   PDF(Pubmed)

Abstract:
The interaction of antigenic peptides (p) and major histocompatibility complexes (pMHC) with T-cell receptors (TCR) is one of the most important steps during the immune response. Here we present a molecular dynamics simulation study of bound and unbound TCR and pMHC proteins of the LC13-HLA-B*44:05-pEEYLQAFTY complex to monitor differences in relative orientations and movements of domains between bound and unbound states of TCR-pMHC. We generated local coordinate systems for MHC α1- and MHC α2-helices and the variable T-cell receptor regions TCR Vα and TCR Vβ and monitored changes in the distances and mutual orientations of these domains. In comparison to unbound states, we found decreased inter-domain movements in the simulations of bound states. Moreover, increased conformational flexibility was observed for the MHC α2-helix, the peptide, and for the complementary determining regions of the TCR in TCR-unbound states as compared to TCR-bound states.
摘要:
暂无翻译
公众号