关键词: Beef cattle Embryo transfer (ET) FOXP3 Genome-wide association study (GWAS) Infertility Repeat breeding

Mesh : Animals Cattle Cattle Diseases / genetics Embryo Transfer Female Forkhead Transcription Factors / genetics Gene Expression Genome-Wide Association Study Infertility, Female / genetics veterinary X Chromosome

来  源:   DOI:10.1186/s12863-017-0573-8   PDF(Sci-hub)

Abstract:
BACKGROUND: Repeat breeding, which is defined as cattle failure to conceive after three or more inseminations in the absence of clinical abnormalities, is a substantial problem in cattle breeding. To identify maternal genetic variants of repeat breeding in Japanese Black cattle, we selected 29 repeat-breeding heifers that failed to conceive following embryo transfer (ET) and conducted a genome-wide association study (GWAS) using the traits.
RESULTS: We found that a single-nucleotide polymorphism (SNP; g.92,377,635A > G) in the upstream region of the FOXP3 gene on the X chromosome was highly associated with repeat breeding and failure to conceive following ET (P = 1.51 × 10-14). FOXP3 is a master gene for differentiation of regulatory T (Treg) cells that function in pregnancy maintenance. Reporter assay results revealed that the activity of the FOXP3 promoter was lower in reporter constructs with the risk-allele than in those with the non-risk-allele by approximately 0.68 fold. These findings suggest that the variant in the upstream region of FOXP3 with the risk-allele decreased FOXP3 transcription, which in turn, could reduce the number of maternal Treg cells and lead to infertility. The frequency of the risk-allele in repeat-breeding heifers is more than that in cows, suggesting that the risk-allele could be associated with infertility in repeat-breeding heifers.
CONCLUSIONS: This GWAS identified a maternal variant in the upstream region of FOXP3 that was associated with infertility in repeat-breeding Japanese Black cattle that failed to conceive using ET. The variant affected the level of FOXP3 mRNA expression. Thus, the results suggest that the risk-allele could serve as a useful marker to reduce and eliminate animals with inferior fertility in Japanese Black cattle.
摘要:
暂无翻译
公众号