关键词: Amaranthus palmeri acetolactate synthase acetolactate synthase inhibitors cross-resistance herbicide resistance weeds

Mesh : Acetolactate Synthase / antagonists & inhibitors genetics metabolism Amaranthus / drug effects enzymology genetics Argentina Enzyme Inhibitors / pharmacology Herbicide Resistance Herbicides / pharmacology Nicotinic Acids / pharmacology Plant Proteins / antagonists & inhibitors genetics metabolism Pyrimidines / pharmacology Sulfonylurea Compounds / pharmacology

来  源:   DOI:10.1002/ps.4662   PDF(Sci-hub)

Abstract:
BACKGROUND: Herbicide-resistant weeds are a serious problem worldwide. Recently, two populations of Amaranthus palmeri with suspected cross-resistance to acetolactate synthase (ALS)-inhibiting herbicides (R1 and R2) were found by farmers in two locations in Argentina (Vicuña Mackenna and Totoras, respectively). We conducted studies to confirm and elucidate the mechanism of resistance.
RESULTS: We performed in vivo dose-response assays, and confirmed that both populations had strong resistance to chlorimuron-ethyl, diclosulam and imazethapyr when compared with a susceptible population (S). In vitro ALS activity inhibition tests only indicated considerable resistance to imazethapyr and chlorimuron-ethyl, indicating that other non-target mechanisms could be involved in diclosulam resistance. Subsequently, molecular analysis of als nucleotide sequences revealed three single base-pair mutations producing substitutions in amino acids previously associated with resistance to ALS inhibitors, A122, W574, and S653.
CONCLUSIONS: This is the first report of als resistance alleles in A. palmeri in Argentina. The data support the involvement of a target-site mechanism of resistance to ALS-inhibiting herbicides. © 2017 Society of Chemical Industry.
摘要:
暂无翻译
公众号