关键词: Bone morphogenetic protein-2 Bone remodeling Implant interface Interfacial bone quality Nanoindentation

Mesh : Aluminum Oxide Animals Bone Morphogenetic Protein 2 Bone Remodeling / physiology Dental Implantation, Endosseous Dental Implants Dental Prosthesis Design Dentin Dogs Elastic Modulus Hardness Male Mandible / physiology surgery Osseointegration / physiology Surface Properties Titanium Viscosity Wound Healing / physiology Zirconium

来  源:   DOI:10.1007/s00784-016-1734-2   PDF(Sci-hub)

Abstract:
OBJECTIVE: The objective of the current study was to examine whether the nanoindentation parameters can assess the alteration of bone quality resulting from different degrees of bone remodeling between bone tissue ages around the dental implant interface with different treatments and healing periods.
METHODS: Dental implants were placed in mandibles of six male dogs. Treatment groups included: resorbable blast media-treated titanium (Ti) implants, alumina-blasted zirconia implants (ATZ), alumina-blasted zirconia implants applied with demineralized bone matrix (ATZ-D), and alumina-blasted zirconia implants applied with rhBMP-2 (ATZ-B). Nanoindentation modulus (E), hardness (H), viscosity (η), and viscoelastic creep (Creep/P max) were measured for new and old bone tissues adjacent to the implants at 3 and 6 weeks of post-implantation. A total of 945 indentations were conducted for 32 implant systems.
RESULTS: Significantly lower E, H, and η but higher Creep/P max were measured for new bone tissues than old bone tissues, independent of treatments at both healing periods (p < 0.001). All nanoindentation parameters were not significantly different between healing periods (p > 0.568). ATZ-D and ATZ-B implants had the stiffer slope of correlation between E and Creep/P max of the new bone tissue than Ti implant (p < 0.039).
CONCLUSIONS: Current results indicated that, in addition to elastic modulus and plastic hardness, measurement of viscoelastic properties of bone tissue surrounding the implant can provide more detailed information to understand mechanical behavior of an implant system.
CONCLUSIONS: Ability of energy absorption in the interfacial bone tissue can play a significant role in the long-term success of a dental implant system.
摘要:
暂无翻译
公众号