Mesh : Adaptor Proteins, Signal Transducing / genetics metabolism Amino Acid Substitution Cell Adhesion Molecules / genetics metabolism Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) / genetics metabolism Humans Leucine / genetics metabolism Male Mutation, Missense Proline / genetics metabolism Protein-Tyrosine Kinases / genetics metabolism Signal Transduction Sperm Tail / enzymology src Homology Domains / genetics

来  源:   DOI:10.1002/mrd.22606

Abstract:
Glyceraldehyde-3-phosphate dehydrogenase from human sperm (GAPDHS) provides energy to the sperm flagellum, and is therefore essential for sperm motility and male fertility. This isoform is distinct from somatic GAPDH, not only in being specific for the testis but also because it contains an additional amino-terminal region that encodes a proline-rich motif that is known to bind to the fibrous sheath of the sperm tail. By conducting a large-scale sequence comparison on low-complexity sequences available in databases, we identified a strong similarity between the proline-rich motif from GAPDHS and the proline-rich sequence from Ena/vasodilator-stimulated phosphoprotein-like (EVL), which is known to bind an SH3 domain of dynamin-binding protein (DNMBP). The putative binding partners of the proline-rich GAPDHS motif include SH3 domain-binding protein 4 (SH3BP4) and the IL2-inducible T-cell kinase/tyrosine-protein kinase ITK/TSK (ITK). This result implies that GAPDHS participates in specific signal-transduction pathways. Gene Ontology category-enrichment analysis showed several functional classes shared by both proteins, of which the most interesting ones are related to signal transduction and regulation of hydrolysis. Furthermore, a mutation of one EVL proline to leucine is known to cause colorectal cancer, suggesting that mutation of homologous amino acid residue in the GAPDHS motif may be functionally deleterious.
摘要:
暂无翻译
公众号